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Abstract

This report describes theoretical work on algorithmic solutions for measuring optic flow. It

discusses the applicability of these solutions on curved compound eyes with fixed curvature

as well as other constrained sensor geometries.

Furthermore, it presents a tool for the evaluation of the presented methods with arbitrary

sensor  geometries.  This  tool  consists  of  a  simulation of  the  sensor  output  together  with

ground truth data of motion and optic flow.

Executive Summary

After  an  introduction  to  the  problem  of  optic  flow  computation  with  respect  to  the

CURVACE sensor we present an overview of algorithmic solutions to this problem. Each of

these methods are discussed with respect to their applicability to the CURVACE sensor.

There are three important issues to be considered for the CURVACE sensor: it has a non-

uniform geometry,  a  low spatial  and a  high temporal  resolution.  Additionally,  we have

different  performance  constraints  depending  on  the  application  scenario.  For  on-chip

processing of optic flow we need high performance methods with low memory consumption

that usually yield low quality optic flow. For this purpose we review existing optic flow

algorithms  and  discuss  novel  modifications  of  these  algorithms  for  application  to  the

CURVACE  sensor.  Particularly  we  propose  a  new method for  optic  flow estimation  by

integrating normal flow with a Kalman filter utilising the high temporal resolution of the

CURVACE sensor. For offline processing of sensor data, e.g. for calibration purposes, we

need high quality optic flow and can afford complex algorithmic solutions since performance

is not a main factor in this case. 

The second part of this report demonstrates the CURVACE simulation tool which is used for

the evaluation of optic flow methods. There are several reasons to create a simulation for this

purpose. First, the CURVACE sensor is not available during the initial phase of the project,

second it is possible to test different sensor layouts without the need to build them. Third, in

a simulation it is easier to set up specific test environments and to provide ground truth data

for evaluation purposes.

The simulation software can be used for other purposes apart from optic flow evaluation.

Basically all application scenarios such as using the sensor on a flying vehicle, which can be

tested using simulation in a controlled environment.

The simulation itself consists of a rendering system for 3D environments and a system for the

computation of the sensor output from the rendered scene. It will be extensible through a

plugin system thus allowing a high flexibility.
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1 Introduction

The  main  task  of  WP3  (Visual  Processing)  is  the  development  of  methods  to  process  visual

information  gathered  with  the  CURVACE  sensor.  Those  methods  will  optimally  exploit  the

specificities of CURVACE such as wide field of view and high temporal frequency. They also have

to deal with low spatial resolution and distributed processing on microcontrollers.

1.1 Measuring optic flow

Optic flow is the apparent motion of brightness patterns in an image sequence ([HS81],[Gi50],

[Gi66]).  It  arises  mainly  from  the  relative  motion  of  objects  and  the  viewer  but  also  from

illumination changes in the scene. Methods for  optic  flow computation usually impose the so

called brightness constancy assumption. The brightness of a point in the scene is assumed to stay

constant  over  time  and  optic  flow  is  only  related  to  motion.  Thus  the  brightness  constancy

assumption can be used to extract the motion of the viewer as well as the motion of other objects in

the field of view.

A sequence of images is described as the intensity of each pixel at position (x,y) and time t as

I(x,y,t). The problem of optic flow estimation consists of recovering the motion field (u(x,y),v(x,y)).

Applying the brightness constancy assumption yields the equation

I x , y , t = I  xu , yv , t1 (1)

which is the basis of many differential methods for optic flow estimation. From this equation we

have two unknowns u and v and it is not possible to compute both from the single equation above.

To  solve  this  problem,  additional  constraints  are  required.  These  usually  consist  of  some

smoothness constraints imposed on the motion field.

2 Optic flow on the CURVACE sensor

There already exist  many approaches to  the problem of  computing optic  flow from an image

sequence. These algorithms are usually applied to perspective images with medium resolutions

(e.g. 640x320 pixel) and the results are used for further processing like motion estimation or image

segmentation. To identify a suitable method for optic flow extraction on the CURVACE sensor, we

need to analyse how the specialities of the CURVACE sensor will influence the processing of optic

flow.

2.1 Cylindrical CURVACE sensor

First,  the  cylindrical  CURVACE sensor  has  a  special  imaging  geometry which differs  from a

perspective  projection.  Instead  it  provides  a  cylindrical  projection  of  the  environment.  This

projection can be unwrapped to a planar image. While perspective images usually yield distortions

at the image borders for large fields of view (especially fish-eye lenses have large distortions), the

projection of the CURVACE sensor is homogeneous over the whole horizontal field of view. Thus,

we can expect better optic flow results than with perspective images when employing existing

algorithms.

Second, the CURVACE sensor has a high temporal resolution. This is another advantage which

simplifies  the  application of  existing flow algorithms.  Estimation of  optic  flow becomes more
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reliable the smaller the motion vectors are. With a high temporal resolution the motion between

consecutive frames is  comparatively small.  Due to these small  motion vectors, approaches like

pyramidal image coarsening are not necessary.

Optic  flow algorithms dedicated to the CURVACE device will  of  course take into account the

general theory of optic flow. On top of this, they will have to deal with and exploit the special

advantages such as homogeneous but sparse sampling of large visual fields and high temporal

resolution. In Section 2.3, we will analyse existing methods and discuss modifications needed for

application to the CURVACE device. 

2.2 Other CURVACE sensors

In the case of other CURVACE sensors the approach to optic flow computation depends on the

specific shape of the sensor. Consider first a free form linear strip of ommatidia. If N is the number

of ommatidia on the strip, we need at least 2N+1 variables to describe the geometry (3 coordinate

values for the first ommatidium and a 3D unit vector for each additional one). From the intensity

values  in  two time frames,  we may obtain  2N measurements  from which we would  need to

recover the local motion vectors (2 variables per ommatidium) plus the 2N+1 geometry variables.

Since  the number of  unknowns thus exceeds the  number of  measurements by 4N+1 to  2N,  a

solution of this problem will not be possible. In order to tackle this problem, additional constraints

must therefore be imposed. First, the sensor geometry will be constrained by limited curvature or,

similarly, to surfaces described globally by a small number of parameters. Second, small patches of

the CURVACE sensor might remain connected rigidly, in which case the geometry parameters

would have to be specified only once for each patch. Third, the speed of surface change can be

limited so that the geometry parameters remain constant over a larger set of image frames.   

Fig. 1: ommatidia layouts with large curvature (left) and zero curvature (right)

The curvature of the CURVACE sensor should be confined to a specified range also for another

reason: Zero curvature is not desirable because it results in a flat sensor layout yielding a kind of

parallel projection where the field of view is only determined by the ommatidia acceptance angle.

A curvature which leads to  gaps between the viewfield of  adjacent ommatidia (Fig.  1)  is  also

problematic, since this would create aliasing artefacts. Thus the maximum curvature is defined by

the acceptance angle of the ommatidia.

If  these requirements are met and a layout of ommatidia similar to the cylindrical CURVACE

sensor is used, the same optic flow algorithms can be used for both types of sensors. A calibration

step is still necessary for this constrained CURVACE sensor, which means that the position and
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orientation of all ommatidia must be determined. This is needed to relate the optic flow, that is

calculated  in  image  space,  to  the  motion  of  the  sensor  in  world  space  (e.g.  for  egomotion

estimation). This step can however be separated from the optic flow computation itself.

Finally we have to consider CURVACE sensors which do not have a regular and rectangular pixel

arrangement. This would be the case for CURVACE strips, or for spherical CURVACE sensors,

where a rectangular  pattern of  ommatidia is  not given.  A different distribution of  pixels  only

means that the image space is sampled at different positions. Resampling the sensor output with a

regular pattern would be one option which allows to use  the presented optic flow algorithms

without further adjustments, but this would be time consuming. However the main difference is

that image gradients can not be computed in the usual way. Thus it is sufficient to develop a

method to compute the image gradients from arbitrary positioned pixels (See also  2.3.2 Minimal

Normal Flow).

2.3 Motion algorithms

The following section presents a selection of algorithms for the computation of optic flow. This

selection is based on the discussed properties of the CURVACE sensor. As for processing of optic

flow on a microcontroller we applied two main criteria. First, the methods should exploit the high

temporal resolution of the sensor. Thus they must be efficiently computable on a microcontroller.

Second, they must be computable with local information. This means that the number of pixels

contributing to a single flow result should be as small as possible. The second point is crucial since

many algorithms imply some smoothness assumptions. In the case of the small spatial resolution

of the CURVACE sensor those assumptions are much weaker.

Global optic  flow methods ([An89],  [Pa06])  satisfy neither of  these restrictions due to iterative

propagation of local results to neighbouring pixels. Methods that rely not only on first and second

order spatial derivatives ([Ur88]) also require a larger pixel neighbourhood for the computation of

these derivatives. Many other methods provide high computational complexity, involving higher

order matrix operations, image warping or Gabor filters (e.g. [Sr94], [He88]) and are also excluded

from  this  survey.  A  more  general  introduction  to  optical  flow methods  can  be  found  in  the

standard literature ([Te95]).

Detailed  performance  evaluations  of  optic  flow  algorithms  are  given  by  Galvin  and  Barron

([Ga98],  [Ba92]) and more recently by the work of Baker et al.  ([BS07]) using image sequences

similar to those generated by classical camera systems. In contrast to these articles we focus first on

a  theoretical  analysis  of  algorithms  since  a  comparable  evaluation  of  the  presented  methods

requires an existing CURVACE sensor or a sensor simulation which are both under development.

The final evaluation will also consider the acceptable tradeoff between accuracy and efficiency

([Li98]).

2.3.1 The Lucas-Kanade algorithm

Due to its efficiency and its straightforward implementation the standard Lucas-Kanade algorithm

for optical flow is widely used ([LK81]). Using Taylor series expansion and omitting higher order

terms equation (1) can be rewritten as:

dI

dx
u

dI

dy
v

dI

dt
=0=I x uI y vI t  (2)
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By  applying  a  smoothness  constraint  over  a  small  neighbourhood  W  we  get  a  set  of  linear

equations to solve the otherwise underdetermined system. The new overdetermined system can be

solved by least squares minimization yielding

[uv ]=G
−1

b
 

(3)

with

G=∑ x , y∈W  I x

2
I x I y

I x I y I y

2  b=∑ x , y∈W  I x I t

I y I t
  . (4)

The  imposed smoothness  constraint  entails  a  high  sensitivity  to  depth  discontinuities  for  this

algorithm and it  requires that  the  matrix  G be invertible.  If  G is  not  invertible  only a  single

gradient direction is present in the selected neighbourhood W which is known as the aperture

problem.

With  respect  to  computational  complexity  the  Lucas-Kanade  algorithm  is  well  suited  for

application to the CURVACE sensor. The algorithm involves a single matrix inversion for each

flow vector which only concerns a 2x2 matrix.

The algorithm requires a sufficiently large integration window to avoid the aperture problem.

Since the spatial resolution of the CURVACE sensor is low, with a single pixel covering a field of

view of about 4°, the integration window should be chosen very small. For an integration window

of 5x5 pixels the algorithm would require that the smoothness assumption holds for a field of view

of 12°. Thus it is necessary to find the best tradeoff for the integration window with respect to

sensitivity to motion discontinuities and good image gradients.

The computed matrix G holds additional information about the gradients in the neighbourhood W

given by its eigenvalues. This information can be used as a quality measure for the computed

optical flow.

2.3.2 Minimal Normal Flow

The normal flow is the component of the optical flow which is normal to the local intensity contour

line, i.e. aligned with the local image gradient. Normal flow u n , v n can be computed from the

spatial and temporal gradients even if there is an aperture problem ([Te95] pp 81-82).

un

vn
 = −I tn =

−I t

I x

2I y

2  I x

I y
  (5)

By  this  simplification  the  resulting  equation  is  fully  determined  and  the  integration  over  a

neighbourhood at the given position is not necessary and we can avoid some of the problems
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introduced by the Lucas-Kanade method. However it should be noticed that the computation of

the spatial gradients still requires a neighbourhood around the given position.

For this reason at least three pixels are required to compute the normal flow, if spatial gradients

are computed with a simple difference operator.  From the pixel  intensity (I(p0),I(p1),I(p2))  the

image gradients, for pixels in a regular square pattern (Fig. 2 left), can be computed as

I x= I  p
1
−I  p

0
 I y=I  p

2
− I  p

0
  . (6)

As was already described before, it is only necessary to adjust the computation of gradients for

different pixel layouts. The gradient computation method proposed here can also be applied to

other optic flow methods (e.g. Lucas-Kanade). If three pixels are positioned at arbitrary positions

p0, p1, p2 (Fig. 2, right) one can see that the gradients g1 and g2 can be calculated from the image

gradient ∇ I= I x , I y as

g i= p
0

p
1
⋅∇ I  (7)

Since the gradients are given by g i=I  pi−I  p
0
 the image gradient can be computed as

 I x

I y
= p

1
− p

0


T

 p
2
− p

0


T
−1

I  p1− I  p0

I  p
2
−I  p

0
  . (8)

The advantage of the presented minimal approach is the small number of sensors needed and the

low computational complexity. Thus it is very well suited for application to the CURVACE sensor

as an elementary motion detector.

The drawback of this method is that it computes only normal flow and further processing might be

necessary for  specific  application scenarios.  Though motion estimation is  still  possible  directly

from normal flow ([Al94]).
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2.3.3 Integrating normal flow over time

Our approach to compute 2D flow vectors from normal flow is to integrate the computed normal

flow over time. We propose to use a Kalman Filter ([Ka60],[BW01]) to estimate the optic flow from

the normal flow. Here we employ the high temporal resolution of the CURVACE sensor and use a

temporal smoothness constraint on the optic flow. This means that we consider the optic flow

vector as a constant signal and the normal flow in each time step as a measurement of this signal.

The time update and measurement equations for the Kalman filter are given by

xk=A xk −1
, A=1  , (9)

Pk=A Pk−1
AQ=Pk−1

Q  , (10)

z k=nk nk⋅xk =H xk , H=nk nk

t
 , (11)

where  Q  and  R  are  the  process  noise  and  measurement  noise  covariance  matrices,  nk is  the

normalized gradient and xk=(uk,vk) is the state vector at time-step k. The measurement zk which is

the normal flow, is calculated by projecting the optic flow on the gradient vector.

Since the optic flow, state xk, is considered to be constant, the time update equations are simple

with A being a unit matrix. The measurement update equations are then given by

K k=P k H
T H Pk H

TR−1
 (12)

xk= xkK k  z k−H x k   (13)

Pk=1−K k H  P k  (14)

Again, these equations can be efficiently solved, since H is a special symmetric matrix and all

matrices are only 2x2. For optimal performance the noise covariance matrices R and Q need to be

tuned to the sensor speed.

The advantages of this method are that we only need a small spatial integration window for optic

flow  computation  and  can  exploit  the  high  temporal  resolution  of  the  CURVACE  sensor.

Additionally the Kalman Filter reduces the influence of noise on the resulting optic flow.

2.3.4 Correlation based optic flow

With another class of optical flow algorithms the image displacements can be inferred by finding

the best matching correlation of image intensities ([Ma00]). Optical mouse chips typically detect

motion by correlation, using regions of 17x17 or more pixels. Due to the small resolution of the

CURVACE sensor only small pixel regions should be used for correlation since otherwise differing

motion vectors might be present within one region.

Again we can take advantage of the high temporal resolution of the CURVACE sensor and use

correlation over time to compute optic flow. Such a method has been proposed by [Ca95].

The method is based on computing the correlation over a region R around (x,y) with different

spatial displacements dx, dy and temporal displacements dt. The Match strength is given by
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M x , y ,d x , d y , d t=∑u , v∈R
C  I u , v , t  , I ud x , vd y ,td t  (15)

where C is the correlation function. The fitting motion is selected by a winner-takes-all strategy,

selecting the (dx,dy,dt) with the best match strength. The resulting motion is then given by

d x

d y
 1

d t

 (16)

The computational  complexity for this  method is linear w.r.t.  the time window size.  Since we

expect optic flow vectors to be small (below one pixel) the spatial search window can be selected

very small.  Only two problems might arise, which is  the memory consumption that increases

linearly with the temporal search window, and the discretization of optic flow results through the

winner-takes-all strategy.

Fig.  3:  possible  positions  of  a  search  window  for  the  best  matching

correlation. left: regular pixel grid, right: irregular pixel distribution where

the search window does not match everywhere.

It is difficult to adapt such a correlation based method to a CURVACE sensor with non-regular

pixel distributions since it is not necessarily possible to shift one pixel region in such a way that

there  is  an  overlap  with  another  set  of  pixels.  Thus  it  is  necessary  to  interpolate  the  image

brightness at  the  relevant positions which can introduce errors and increases the computation

time.

2.3.5 Reichardt Detector

Inspired by the experiments of Werner Reichardt in the 1950's on the beetle Chlorophanus viridis,

the Reichardt Detector is a biologically inspired model for motion extraction from compound eyes

and still serves as basis for elementary motion detectors ([HR56]). 
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Fig.  4: Reichardt correlation detector (left) and its modifications

to an input signal for a step edge moving from left to right (right)

(image from [Ma00]).

D: differentiation, H: low pass filtering, X: correlation

The basic Reichardt detector consists of two point sensors. One of these sensors is connected to a

delay element. The output of the filter and the second sensor are connect to a comparison unit

which computes the correlation between both signals.

This  detector  has  a  preferred direction,  detecting movements  heading  from left  to  right  with

maximal output if the speed of the movement corresponds to the delay in the respective delay

element.

By adding a mirror-symmetrical unit of this half-detector we get a complete motion detector (Fig.

4). The model shown here is the most basic version of the Reichardt Detector. The hierarchical

architecture allows for several refinements to be made, such as the addition of temporal filters,

which  essentially  leave  its  operation  unchanged.  Modifications  and  models  with  a  similar

architecture, but different mathematical operations were proposed by [SS84], [WA83], and [AB85].

Several variations of the Reichardt motion detectors will be tested for the CURVACE sensor. Thus

an optimal filter combination can be selected. Since the Reichardt Detector requires a small amount

of computational effort and is based on motion models derived from insect compound eyes it is a

promising choice for application to the CURVACE sensor.

2.3.6 Accurate optic flow for calibration

A large set of optical flow algorithms use variational methods to calculate optical flow, one of the

first methods being the algorithm of [HS81]. A special class of this algorithms is based on total

variation regularization with  many different methods being recently  published (see  [BS07]  for

evaluation of recently published algorithms). Since this class of algorithms need many iterations

with complex operations they are not suited for application on a microcontroller and even may not

run at realtime on standard desktop PCs. 

V1.8 – 31/01/11 11/21 Public Version

________________________________________________________________________________________________

D D

H H

X X

∫ ∫

summation

x
1

x
2

t t

t

I
2

t

I
1

t t

t t



FP7-2009-ICT-237940 D3.1 Methods for optical flow extraction from arbitrary curved eyes

However they have proved to provide dense optical flow fields with high accuracy and therefore

are  best  suited  for  the  CURVACE  sensor  in  the  context  of  calibration.  We  will  give  a  short

introduction to one representative method of this kind ([WP08]).

The method is based on the minimization of the term

∫ l⋅p  I
0
x −I

1
xu x r u ,∇ ud x  (17)

where p(...) is the so called image data fidelity term, r(...) the regularization term and l weights

between these terms. One can see that the first term is derived from equation (1) where u(x) is the

motion  field.  The  second  term  r(...)  implies  a  smooth  motion  field  (smoothness  assumption).

Selecting p x =x
2
 and r ∇ u =∣∇ u

2∣ results in the Horn-Schunck Model ([HS81]).

In the method from [BS07] both terms are defined differently by p x =∣x∣ and r ∇ u=∣∇ u∣ .

Since both terms are not continuously differentiable a differentiable approximation is used. The

Image I1 is linearised near x+u0 yielding the functional

∫ l∣u I xu , t1I xu
0
, t1−u

0
I xu , t1−I  x , t ∣  (18)

The whole term is iteratively minimized by alternating between minimization with respect to the

data term and minimization with respect to the regularization term yielding a smooth motion

field.

2.3.7 Summary

We have presented a set of optic flow algorithms than can be used with the CURVACE sensor.

Preliminary tests of the Lucas-Kanade method with the CURVACE simulator indicate that the

quality of the computed optic flow is low if the integration window is chosen appropriately small.

The small integration window together with the low spatial resolution of the sensor can lead to

insufficient gradient information making the solution of the equation numerically unstable. Due to

the small number of sensor elements it is not feasible to select only the good flow vectors.

Our  approach  of  integrating  normal  flow  over  time  with  a  Kalman  filter  represents  a  good

tradeoff.  Normal flow can be computed instantaneously as long as the local image gradient is

larger  than  zero  and  integration  of  these  measurements  over  time  can  exploit  the  temporal

resolution of the CURVACE sensor.

The Reichardt Detector follows a similar scheme. Only two sensor elements are necessary to detect

an elementary motion, but it is necessary to integrate the measurements from multiple detectors to

compute an optic flow vector.

The correlation based method can only be used for CURVACE sensors with regular pixel positions

and requires to store a whole sequence of sensor images. Table 1 gives an overview of the different

methods. Local methods compute flow at one or more points in the image and can be adapted to

performance requirements by selecting points of interest,  while global  methods compute optic

flow over the whole image. Not every method yields a full two-dimensional optic flow vector and

their  output  needs  further  processing.  Realtime  capability  has  not  yet  been  asserted  for  an

embedded chip thus this column is related to the performance of these algorithms on standard

V1.8 – 31/01/11 12/21 Public Version

________________________________________________________________________________________________



FP7-2009-ICT-237940 D3.1 Methods for optical flow extraction from arbitrary curved eyes

PC's  and can only  be  an  estimate  for  embedded processors.  The minimum number of  sensor

elements required to compute this  kind of  flow is an important factor,  due to the low spatial

resolution of the CURVACE sensors. This number includes pixels that are needed for gradient

computation. This entry has no significance for the global TV-L1 method.

Optic flow method realtime capable full 2D flow local/global min. sens. elements

Lucas-Kanade yes yes local 6

Normal Flow yes no local 3

Kalman filtered normal

flow

yes yes local 3

Correlation (Ted Camus) yes yes local 9

TV-L1 no yes global X

Reichardt Detector yes no local 2

Table 1: Optic flow methods

In the next step these algorithms will be evaluated with a simulation of the CURVACE sensor with

respect to accuracy, speed, and robustness. It should be noted that for the TV-L1 algorithm the

main criteria will be accuracy and robustness since it will only be used for offline processing. For

the other algorithms processing speed will be more important.

2.4 Further processing of optic flow

While optic flow in the image space can be computed independently from the underlying sensor

geometry, further processing of this data might require to transform the computed optic flow into

a geometrically meaningful representation. For the purpose of 3-dimensional motion estimation it

is  necessary  to  compute  the  spatial  viewing directions  that

corresponds to each pixel.

A  common  representation  of  optic  flow  for  this  kind  of

problems is to inscribe the optic flow onto the surface of a unit

sphere  where  viewing  directions  are  represented  as  unit

vectors  and optic  flow as  a  vector  tangential  to  the  sphere

surface. This representation can be computed from the optic

flow in the image space if the sensor geometry is known.

For the cylindrical CURVACE sensor the geometry is explicitly

given  by  construction  and  the  corresponding  viewing

directions can be calculated directly. 

In the case of other CURVACE sensors it will be necessary to

recover the underlying geometry. Our first approach on calibration will be to perform predefined

motions with the CURVACE sensor and compute the corresponding optic flow from the sensor

output. From the optic flow predicted from the motion of the sensor and the optic flow computed

from the sensor data we will be able to estimate the position of each ommatidium.
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vectors
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2.4.1 Egomotion and distance estimation

Some applications of the computed optic flow are the estimation of egomotion, relative distances

to  surrounding  objects,  and  time  to  collision.  Motion  estimation,  including  the  separation  of

egomotion from independent motion,  is  described in  our previous work ([YS10],[YM10]).  The

presented methods can be applied for the CURVACE sensors by taking their specific geometry

into concideration. Independent motion detection will however be less reliable due to the sensors

low spatial resolution.

ṁ=−o×m−
 I−mmT v

r m
 (19)

Equation 19 defines the derivation of the flow vector ṁ from the rotation o and translation v for

the viewing direction m, where r(m) is the distance of the point in the viewing direction m . In a

general case with arbitrary motion the rotation and translation parameters and relative distance

could be estimated by least squares minimization ([Ka93]). Estimating the relative distances allows

to use CURVACE as proximity sensor.

In  certain cases the  full  motion parameters don't  need to  be  estimated from the visual  input,

drastically reducing the computational effort and visual ambiguities. Either additional sensors are

available or only translational  motion is present. The translational  component of  the extracted

optical flow is inversely proportional to the distance to the object in relative motion, which is the

base of the motion parallax effect ([Wh70]). The CURVACE sensor may provide the robot with the

translational  optic  flow  as  input.  Thus,  the  robot  can  either  keep  a  safe  distance  to  objects

proportional to the forward speed ([Be09]) or control the speed with a close-loop system to keep

constant values of the optic flow at predetermined locations of the sensor ([Ru05]). For a free flying

aircraft it would be necessary to exclude the optic flow component due to rotations to estimate the

proximity of obstacles, a process known as de-rotation of optic flow ([Ar04]). In CURVACE, this

can be achieved with an extra processing step by predicting the optic flow generated by rotation as

measured by the rate gyroscopes implemented in the sensor, and then subtracting the predicted

optic flow from the measured optic flow. 

In the case of visual motion it is assumed that the whole system has a single center of projection. If

this does not hold for a specific CURVACE sensor, the spatial position and orientation of each

single  ommatidium  will  be  recovered  so  that  each  of  such  ommatidium  is  treated  as  an

independent camera system ([Ts97]).
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3 CURVACE sensor simulation

Since the CURVACE sensor chip is  not yet  available  at  the beginning of  the  project,  it  is  not

possible to evaluate the performance of the presented algorithms with the real chip. Evaluation of

the  optic  flow  methods  on  a  PC  using  normal  image  data  sets  is  not  feasible  for  a  reliable

prediction of the algorithm performance with respect to accuracy. The imaging characteristics of

the CURVACE sensor differ greatly from normal cameras and the results from such an evaluation

could  not  necessarily  be  transferred to  the  CURVACE  sensor.  For  this  reason  we decided to

develop a  system which is  able  to simulate  the output  of  the  CURVACE sensor  in a  realistic

environment. Not only can such a simulation be used for algorithm evaluation, it can also be used

for testing free form CURVACE setups before assembly.

The final goal of this system development is an extensible simulation core system which provides

the virtual environment and rendering for different CURVACE sensors. Extensions to the core

system could e.g. consist of a flight simulation system that uses the control API to create a virtual

flyer equipped with a virtual CURVACE sensor allowing to test CURVACE assisted flight control

algorithms.

The simulation of an artificial compound eye is a new challenge that has not been dealt with to this

extent. Methods for compound eye simulation usually focus on the image formation from the lens

system but do not consider imaging of complete scenes ([Fa07]). Existing raytracing and rendering

systems on the other hand can not handle the special geometry and lens system of the artificial

compound eye. One approach by T. Neumann ([Ne02]) which is similar to the proposed method

targets the simulation of insect eyes.

3.1 Sensor simulation with the plenoptic function

The simulation of the CURVACE sensor requires to determine the light intensity reaching each

sensor. This can be done for each ommatidium by summing the amount of light coming from

points within the field of view of the ommatidium and travelling through its center of projection.

The  amount  of  light  travelling  through  a  point  (x,y,z)  in  space  in  a  given direction (θ,φ)  is

described by the plenoptic function ([AB91])

L x , y , z ,θ ,φ  . (20)

Thus  we  need  to  simulate  the  plenoptic  function  for  a  subspace  of  parameters.  This  set  of

parameters is defined by the positions (xo,yo,zo) of each ommatidium and its corresponding field of

view.

3.2 Partial simulation of the plenoptic function

The  presented  simulation  system  consists  of  two  main

processing units, the environment rendering unit and the

sensor simulation unit.

The  rendering  unit  loads  a  virtual  scene  and  renders

multiple views of the scene (Fig. 6). It allows to control the

observer through mouse control, predefined motion paths

V1.8 – 31/01/11 15/21 Public Version

________________________________________________________________________________________________
Fig. 6: unfolded environment map



FP7-2009-ICT-237940 D3.1 Methods for optical flow extraction from arbitrary curved eyes

or through another control extension. In this manner it is possible to simulate any motion sequence

through the virtual scene.

The rendered views of the scene create a sampling of the plenoptic function in the virtual scene.

Depending on the kind of CURVACE sensor that is simulated and the desired accuracy there are

two methods of rendering the environment. If all ommatidia have the same center of projection (or

their centers of projection lie in a sufficiently small area) only one view of the scene from a single

viewpoint needs to be rendered by sampling the plenoptic function at a single position (x,y,z).

Since a perspective projection can only cover less than 180° field of view and distortions tend to be

large above 90° we render 6 views of the scene. This environment map allows to cover the whole

scene without overlap between rendered views and creates a discrete sampling of the plenoptic

function at one point in space.

For ommatidia with different centers of projection we need to sample the plenoptic function at

multiple  positions  and  consequently  need  to  render  a  separate  view  of  the  scene  for  each

ommatidium.

3.3 Computation of sensor output

The output of each CURVACE sensor element can be computed from the plenoptic function. If an

ommatidium located at (x,y,z) has a field-of-view of S which is defined by two angle parameters,

its output can be given by

∫S
L x , y , z ,θ ,φdθ dφ  . (21)

Since the explicit reconstruction of the plenoptic function is not necessary we can directly recover

the output Lo of an ommatidium from the rendered views. This is done by computing the influence

(or weight) wo(P) of each rendered pixel P and computing the weighted average of the luminance

of all pixels.

Lo=
∑

P
woP ∗LP 

∑P
w oP

 (22)

Since only a few of all rendered pixels will have a weight wo

larger than zero and these weights will not change over time

the  performance  of  this  algorithm  can  be  increased  by

precalculating the weights and summing only over pixels that

have an influence on the output.

For a simulated ommatidium with a given angular sensitivity

function (ASF)  the  weighting function wo  can be computed

from the viewing direction of the ommatidium vo, the image

plane normal to a given rendered view of the environment,

and the direction vector p for each pixel P on the image plane

using  equation  23,  as  is  shown  in  Fig.  7.  The  angular

sensitivity depends on the angle between p and v0. 
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woP =ASF ∡  p , vocos ∡ n , p  (23)

The solid angle covered by a single pixel depends on the angle between the pixel direction p and

the  image  plane  normal  n  and  is  proportional  to  the  cosine  of  this  angle.  The  second  term

cos ∡ n , p  of the weighting function accounts for this difference.

The value Lo represents the amount of light incident on the photosensitive area of the respective

ommatidium. In an imaging system with a linear response function this can be directly used as the

output of  the  sensor  element.  The  full  simulation of  the  response function  for  the  CURVACE

sensors is  more  complex  and  this  issue  is  tackled  within  the  further  developments  of  the

simulation.

3.4 Simulation of arbitrary ommatidia

In the case of arbitrary ommatidia positions without a common centre of projection, the rendered

views are created differently. For each ommatidium, a view of the environment is rendered in such

a way that the corresponding image plane normal coincides with the viewing direction of  the

ommatidium and the opening angle of the ommatidium matches the viewfield of the scene view.

Thus a much larger number of different views will be rendered while the resolution of each of

these views may be significantly smaller than that of the cube environment map (Fig. 8).

The  weighting  function  wo then  only  depends  on  the  angular  sensitivity  function  of  the

ommatidium. If each ommatidium has the same ASF the weighting function needs to be computed

only once.

While this kind of simulation is slower than rendering only 6 views for a cube environment it has

the advantage that the direction and position of  a single  ommatidium can be changed during

simulation without loss of  performance. Changing these parameters in the first  system would

require recomputation of the weighting function reducing performance significantly.

Thus this simulation setup can be used to simulate dynamic CURVACE sensors or to test the

effects of different sensor layouts at realtime.
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Fig. 8: example of 144 rendered views with one view per ommatidium (left), and birds eye view of the scene with

sensor position (right)
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3.5 Simulation system overview

A quick overview of the rendering system of the simulator is given in Fig. 9 below. The main input

to the system is the CURVACE sensor layout, which contains the specifications of the simulated

sensor like geometry, ommatidia type, and the angular sensitivity function. There are different

options that can be used for simulation. Grey boxes indicate that we will add these options later in

the  simulator  development.  The  CURVACE  sensor  layout  is  used  to  determine  the  required

environment map together with the mapping from the environment map to the simulated sensor

output.

To sample a single simulated sensor output, the system renders all views of the scene contained in

the environment map. Then the sensor mapping is used to compute the simulated sensor output

from the rendered scene views.

Fig. 9: Overview of the sensor simulation

3.6 System performance

For the rendering of virtual scenes we use the OpenSceneGraph library based on OpenGL. The

current implementation runs on Windows but since the OpenSceneGraph library is available for

Linux the core system can easily be ported.

Simulating a single frame of the cylindrical CURVACE sensor needs about 11ms while simulating

the sensor  with  144 views takes  120ms on a  2.2GHz Intel  Core 2 Duo with  NVIDIA GeForce

8600 M GS (Table 2).

with cube map (max. 6 views) with 144 views

scene rendering 7ms 112ms

output computation 4ms 6m

full time (frames/second) 11ms (90FPS) 118ms (8.5FPS)

Table 2: Performance of CURVACE simulation system

3.7 Future work

As a validation tool for optic flow algorithms the simulation will provide ground truth optic flow.

In contrast  to real sensor  measurements,  ground truth data can be directly obtained from the

simulation since sensor motion and object distance are well known.
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Further developments of the CURVACE simulator include different geometric sensor layouts with

the possibility of changing the shape at runtime. At this time, the angular sensitivity function is

modelled by a Gaussian function. While this is already a good approximation we strive to use a

real  measured  sensitivity  function  for  the  sensor  simulation  to  achieve  more  realistic  sensor

output. For the same reason we will implement appropriate noise models for the sensor.

Further validation of the presented optic flow algorithms will be performed using the simulated

sensor output from different scenes with artificial and natural textures. By making the simulator a

public tool we could allow other researchers without access to a CURVACE sensor to experiment

with the sensor in simulation, making it possible to establish a community that can contribute to

the public visual filter library we aim at.
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